Periodic Table Documentation
Release 0.9

Paul Kienzle

July 09, 2010

CONTENTS

1 User’s Guide 3
1.1 Periodic Table of Elements e e 3
1.2 Installing o oo o e e e e 5
1.3 BaSiCUSAZE v o v v et e e e e e e e e e e e e e e e e e 5
1.4 Chemical Composition i v v it et e e e e e e e e e e e e e e 8
1.5 Bundling withpy2exe e e 9
1.6 Adding properties e e e e e e 10
1.7 Customtables e e e e e e e 12
1.8 DataSOUICES v v v vt it e e e e e e e e e e e 13
IO LICENSE . . . v o i e e e e e e e e e 14
L1100 Disclaimer e e e e e 14
LAL Credits o o o e e e e e 14
2 Reference 15
2.1 Coretable. e 15
2.2 Chemical formula operationsl e e e e e e e e e e e e 21
2.3 Covalentradius L e e e e e e e 23
2.4 Crystal StruCture o v v o e 24
2.5 DENSILY . . v v o e e e e e e e e e e e e e e e e e 24
26 MasS e e 26
2.7 Neutron scattering potentials L e e e e e e e e e e 27
2.8 X-ray scattering potentials L. oL oL e e e e e e 34
2.9 Magnetic Form Factor 38
3 Indices and Tables 41
Module Index 43
Index 45

Periodic Table Documentation, Release 0.9

The periodictable package provides an extensible periodic table of the elements pre-populated with data important to
neutron and X-ray scattering experiments. Periodic table is written entirely in Python and does not require any external
libraries.

CONTENTS 1

Periodic Table Documentation, Release 0.9

2 CONTENTS

CHAPTER
ONE

USER’S GUIDE

This section gives an overview and introduction to Periodic Table. Read this to have an idea about what Periodic Table
can do for you (and how) and if you want to know in detail about Periodic Table, refer to the Periodic Table Modules
Reference.

1.1 Periodic Table of Elements

The periodictable package provides an extensible periodic table with various properties of the elements like name,
symbol, mass, desnity etc and also provides data important to neutron and X-ray scattering experiments. With the
elements package you can compute the scattering potential of a compound at a given wavelength.

There is a wealth of possible information that could be stored in such a table, and collecting it all is far beyond the
scope of this project. Instead, we provide an extensible table in which third party packages can provide properties in
addition to the base properties we define here.

Periodic Table Documentation, Release 0.9

Neutron SLD for elements in natural abundance

Scattering length density (10~ Nb)

40 60 80 100
Element number

o
N
o

Neutron SLD as a function of element.

1.1.1 Features

Standard properties Name, symbol, mass and density of elements are built in.
Chemical Formula Parses chemical formula and computes properties such as molar mass.

Isotopes Mass and relative abundance of isotopes are included for known isotopes. Formulas can include isotope
composition.

Ions Magnetic form factors and ionic radii for various ions.

Neutron and X-ray Scattering Factors Provides neutron and wavelength dependent X-ray scattering fac-
tors for elements, isotopes, and formulas.

Extensible New properties can be added to the Periodic Table from outside the package. Specialized tables can
be created with alternatives to the standard values.

Data Sources References are available for all information in the table.

4 Chapter 1. User’s Guide

Periodic Table Documentation, Release 0.9

1.2 Installing

This tutorial will walk you through the process of installing Periodic Table. To follow, you only need two basic things:
* A working Python installation, version 2.4 or higher.
 Easy_install module, if you don’t have easy_install installed on your system, download here.

The periodic table will be provided as an egg on PyPI, and can be obtained simply with:

[coming soon] easy_install periodictable

The source is available via svn:

svn co svn://danse.us/common/elements/trunk periodictable
cd periodictable
python setup.py develop

Track updates to the package using:

svn update

By using the develop keyword on setup.py, you can modify and update the package in place without needing to reinstall
each time.

If you find you need to modify the periodic table package, please generate a patch and send it to the DANSE Project

mailing list at danse-dev @cacr.caltech.edu:

svn diff > periodictable.patch

Windows user can use TortoiseSVN package which provides similar operations.

1.3 Basic usage

This section provides various examples on how to get started with Periodic table. These examples should work on all
periodic table supported platforms.

Access particular elements by name:

>>> from periodictable import hydrogen
>>> print "H mass", hydrogen.mass, hydrogen.mass_units
H mass 1.00794 u

Access particular elements as symbols:

>>> from periodictable import H,B,Cu,Ni

>>> print "B absorption”, B.neutron.absorption

B absorption 767.0

>>> print "Ni f1/f2 for Cu K-alpha X-rays", Ni.xray.scattering_ factors(Cu.K_alpha)
Ni f1/f2 for Cu K-alpha X-rays (27.13235204490778, 8.4032444506816351)

Access isotopes using mass number subscripts:

>>> print "58-Ni vs 62-Ni scattering", Ni[58].neutron.coherent, Ni[62].neutron.coherent
58-Ni vs 62-Ni scattering 26.1 9.5

1.2. Installing 5

http://pypi.python.org/pypi/setuptools#files
http://pypi.python.org/pypi
http://danse.us
mailto:danse-dev@cacr.caltech.edu
http://tortoisesvn.tigris.org/

Periodic Table Documentation, Release 0.9

Access elements indirectly:

>>> import periodictable
>>> print "Cd density", periodictable.Cd.density, periodictable.Cd.density_units
Cd density 8.65 g/cmx=*3

Import all elements:

>>> from periodictable import =«
>>> print periodictable.H

H

>>> print periodictable.H.mass
1.00794

Deuterium and tritium are special isotopes named D and T some neutron information is available as ‘n’:

>>> print "D mass",D.mass

D mass 2.014101778

>>> print "neutron mass",n.mass
neutron mass 1.00866491597

Process all the elements:

>>> # Iimporting periodic table as "import periodictable”
>>> for el in periodictable.elements:
print el.symbol,el.name
n neutron
H hydrogen
He helium

Uuh ununhexium
Another example for processing all elements:

>>> # importing periodic table as "from periodictable import x"
>>> for el in elements:
print el.symbol,el.number

asie BN
o .

He 2

Process all the i sot opes for an element:

>>> for iso in periodictable.H:
print iso,iso.mass

H 1.0078250321
2.014101778
3.0160492675
-H 4.02783

H 5.03954

H 6.04494

Retrieve ion specific properties such as magentic form factor:

6 Chapter 1. User’s Guide

Periodic Table Documentation, Release 0.9

>>> import periodictable

>>> ion = periodictable.Fe.ion[2]
>>> print ion.magnetic_ff[ion.charge] .M _Q([0,0.1,0.27)
[1. 0.99935255 0.99741366]

You can create a unique handle to an individual ion. In addition to storing the ion charge, this can be used to reference
the underlying properties of the element or isotope:

>>> Ni58_2 = periodictable.Ni[58].ion[2]

>>> Ni_2 = periodictable.Ni.ion[2]

>>> print "charge for Ni2+",Ni_2.charge

charge for Ni2+ 2

>>> print "mass for Ni[58] and for natural abundance"”, Ni58_2.mass, Ni_2.mass
mass for Ni[58] and for natural abundance 57.9353479 58.6934

The ion specific properties can be accessed from the ion using ion.charge for the ion index:

>>> import pylab

>>> import periodictable

>>> Fe_2 = periodictable.Fe.ion[2]

>>> Q = pylab.linspace(0,16,200)

>>> M = Fe_2.magnetic_ff[Fe_2.charge].j0_Q(Q)
>>> pylab.xlabel (r’Magnetic Form Factor for Fe’)
>>> pylab.ylabel (r’ S\AA"{-1}5")

>>> pylab.title(’Ion specific property for Fe’)
>>> pylab.plot (Q,M)

1.3. Basic usage 7

Periodic Table Documentation, Release 0.9

Lo lon specific property for Fe

0.8

0.6

_0'20 2 4 6 8 10 12 14 16

Magnetic Form Factor for Fe

Missing properties generally evaluate to None:

>>> print "Radon density",periodictable.Rn.density
Radon density None

Specific defined properties related to elements can be accessed in a table format as shown in following example :

>>> elements.list ('symbol’,’K_alpha’, format=" K-alpha = ")
Ti K-alpha = 2.7496
Cr K-alpha = 2.2909
Mn K-alpha = 2.1031

Ag K-alpha = 0.5608

1.4 Chemical Composition

Some properties are available for groups of elements. Groups are specified as a chemical formula string and either
density or cell volume for the crystal structure. While it does not provide any information about molecular structure,
a formula does all complete control over chemical composition.

8 Chapter 1. User’s Guide

Periodic Table Documentation, Release 0.9

¢ Individual atoms are represented by periodic table symbol. These are case sensitive, so “CO” is different from
£4C093'

» Formula strings consist of counts and atoms such as “CaCO3+6H20”.

* Groups can be separated by ‘+’ or space, so “CaCO3 + 6H20” works as well.
* Groups can be defined using parentheses, such as “CaCO3 (H20)6”.

¢ Parentheses can nest: “(CaCO3(H20)6)1”.

* Isotopes are represented by index, e.g., “CaCO[18]3+6H20".

* Counts can be integer or decimal, e.g. “CaCO3+(3HO1.5)2”.

A formula string is translated into a formula using periodictable.formula (). Once the formula has been
formed, you can perform algebra on the entire formula, such as adding together two formulas to make a more complex
compound.

The following is an example of hydrated quartz:

>>> import periodictable

>>> 5102 = periodictable.formula(’Si02")

>>> hydrated = Si02 + periodictable.formula (’ 3H20")

>>> print hydrated, 'mass’,hydrated.mass

S1i02 (H20)3 mass 114.13014

>>> rho,mu,inc = periodictable.neutron_sld(’Si02+3H20’,density=1.5,wavelength=4.75)

>>> print hydrated, ’'neutron sld’,’ "%rho

S102 (H20) 3 neutron sld 0.849

>>> rho,mu = periodictable.xray_sld(hydrated,density=1.5,
wavelength=periodictable.Cu.K_alpha)

>>> print hydrated,’X-ray sld’,’ "%rho

Si02 (H20) 3 X-ray sld 13.5

Formulas are parsed from strings using the following grammar:

number t: [1-91[0-9]%

fraction (] 0" | number) ’.’" [0-9]=%

count :: number | fraction | '’

symbol :: [A-Z][a-z]~*

isotope :: [’ number 17 | '/

element :: symbol isotope count

separator :: '+’ | " 7

group :: count element+ | ' (’ formula ')’ count
grammar :: group separator formula | group | '’

1.5 Bundling with py2exe

When using periodictable as part of a bundled package, you need to be sure to include the data associated with the
tables. This can be done by adding a periodictable entry into the package_data property of the distutils setup file:

import periodictable
setup (..., package_data=periodictable.package_data, ...)

If you have a number of packages which add package data (for example, periodic table extensions), then you can use
the following:

1.5. Bundling with py2exe 9

Periodic Table Documentation, Release 0.9

import periodictable
package_data = {}
package_data.update (periodictable.package_data)

setup (..., package_data=package_data, ...)

1.6 Adding properties

The periodic table is extensible. Third party packages can add attributes to the table, and they will appear in all of the
elements.

In order to add a new property to to the table, you need to define a python package which contains the required
information, and can attach the information to the periodic table so that it is available on demand. This is done with
the function init in your table extension.

This example adds the attribute discoverer to each element. First create the file discoverer/core.py:

mmwn

Partial table of element discoverers.

From http://en.wikipedia.org/wiki/Discoveries_of_the chemical_elements.

mown

import periodictable.core

def init (table, reload=False):
if ’discoverer’ in table.properties and not reload: return
table.properties.append(’discoverer’)

Set the default, if any
periodictable.core.Element.discoverer = "Unknown"

Not numeric, so no discoverer_units

Load the data

for name,person in data.iteritems():
el = table.name (name)
el.discoverer = person

data = dict (

arsenic="Jabir ibn Hayyan",
antimony="Jabir ibn Hayyan",
bismuth="Jabir ibn Hayyan",
phosphorus="H. Brand",
cobalt="G. Brandt",
platinum="A. de Ulloa",
nickel="A.F. Cronstedt",
magnesium="J. Black",

Now that we have defined the init function, we need a way to call it. The simplest solution is to load it directly when
your package is imported. In the current example, this could be done by adding the following line to the end of the
file:

10 Chapter 1. User’s Guide

Periodic Table Documentation, Release 0.9

init (periodictable.core.elements)

This would be fine for the current example because the table size is small and load time is fast.
For large tables, you may wish to delay loading the table data until it is needed. To do this,
we use the periodictable.core.delayed _load() function in our package _ init__ file
discoverer/__init__ .py:

import periodictable.core

Delayed loading of the element discoverer information
def _load_discoverer () :

mmn

The name of the person or group who discovered the element.

mmn

from . import core
core.init (periodictable.core.default_table())
periodictable.core.delayed_load([’discoverer’], _load_discoverer)

The first argument to delayed_load is the list of all attributes that will be defined when the module is loaded. The
second argument is the loading function, whose docstring will appear as the attribute description for each attribute in
the first list.

Check that it works:

>>> import discoverer

>>> import periodictable

>>> print periodictable.magnesium.discoverer
J. Black

Isotope and ion specific data is also supported. In this case we need a data table that contains information for each
isotope of each element. The following example uses a dictionary of elements, with a dictionary of isotopes for each.
It adds the shells attribute to Fe[56] and Fe[58].

Define shelltable/core.py:

mon

Example of isotope specific extensions to the periodic table.
mmn

from periodictable.core import Isotope

def init (table, reload=False):
if ’shells’ in table.properties and not reload: return
table.properties.append(’shells’)

Set the default. This 1is required, even 1if it is only
setting it to None. If the attribute is missing then

#
#
the isotope data reverts to the element to supply the
value, which is almost certainly not what you want.
Isotope.shells = None
Load the data
for symbol,eldata in data.iteritems{() :

el = table.symbol (symbol)

for iso,isodata in eldata.iteritems():

el[iso].shells = isodata

Define the data

1.6. Adding properties 11

Periodic Table Documentation, Release 0.9

data = dict (
Fe = {56: "56-Fe shell info",
58: "58-Fe shell info",
bo
)

Again, we are going to initialize the table with delayed loading. In this case it is very important that we set the
isotope=True keyword in the delayed_load call. If we don’t, then the magic we use to return the correct value after
loading the new table information fails. Since unknown attributes are delegated to the underlying element, the value
for the natural abundance will be returned instead. On subsequent calls the isotope specific value will be returned.

This is demonstrated in shelltable/_ _init__ .py:

import periodictable.core

Delayed loading of the element discoverer information
def _load():

mmn

The name of the person or group who discovered the element.

from . import core
core.init (periodictable.core.default_table())
periodictable.core.delayed_load([’shells’], _load,
isotope=True, element=False)

Check that it works:

>>> import shelltable

>>> import periodictable

>>> print periodictable.Fe[56].shells
56-Fe shell info

>>> print periodictable.Ni[58].shells
None

Ion specific data is more complicated, particularly because of the interaction with isotopes. For example,
Ni[58].1ion[3] should have the same mass as Ni[58] (the mass of the electron is negligible), but a dif-
ferent mass from Ni.ion[3]. However, the f_0 scattering factors for X-rays are dependent on the ioniza-
tion state, so Ni [58] .ion[3] .xray.f0(Q) and Ni.ion[3].xray.f0 (Q) are the same but different from
Ni.xray.f0(Q).

Current support for ion dependent properties is awkward. The X-ray table periodictable.xsf
creates a specialized structure for each ion as it is requested. The magnetic form factor table
periodictable.magnetic_ff doesnot try to support ion.magnetic_ff directly, but instead the user must
request ion.magnetic_ff[ion.charge]. Properties dependent on both isotope and ion can probably be im-
plemented, but there are no examples yet.

Be sure to use the ion=True keyword for delayed_load when the table extension contains ion specific information.

1.7 Custom tables

You can create your own private instance of PeriodicTable and populate it with values.

Example:

12 Chapter 1. User’s Guide

Periodic Table Documentation, Release 0.9

>>> import periodictable
>>> from periodictable import core, mass, density, elements

>>> mytable = core.PeriodicTable (table="H=1")
>>> mass.init (mytable)
>>> density.init (mytable)

>>> # Reset mass to H=1 rather than C=12
>>> scale = elements.H[1l] .mass
>>> for el in mytable:
el._mass /= scale
if hasattr(el,’_density’) and el._density != None:
el._density /= scale
for iso in el:
iso._mass /= scale

>>> print mytable.H[1l].mass, mytable.C[12] .mass

1.0 11.9068286833

>>> print periodictable.H[1l] .mass, periodictable.C[12].mass
1.0078250321 12.0

You will need to add individual properties by hand for all additional desired properties using
module.init (elements).

The table name (H=1 above) must be unique within the session. If you are pickling elements from a custom table, you
must create a custom table of the same name before attempting to restore them. The default table is just a custom table
with the name default.

Support for custom tables could be made much smoother by delegating all properties not defined in the custom table
back to the base table, much like is currently done for Isotopes and ITons. That way you only need to replace the
properties of interest rather than defining all new properties.

The alternative to using custom tables is to replace a dataset in the base table using e.g.,
custom_mass.init (elements, reload = True), where custom_mass is your own version of the
periodic table values. Be aware, however, that this will have a global effect, changing the mass used by all packages,
but you are strongly discouraged from doing so.

1.8 Data Sources

Physical constants NIST Physics Laboratory - Constants, units and uncertainty

Atomic and isotope mass NIST Physics Laboratory - Atomic weights and isotope composition
Atomic density ILL Neutron Data Booklet

Covalent Radii Cordero, et al., Dalton Trans., 2008, 2832-2838, doi:10.1039/801115j

Magnetic form factors Brown. P. J., In International Tables for Crystallography, Volume C, Wilson. A. J. C (ed),
section 4.4.5

Neutron scattering factors Atomic Institute for Austrian Universities
X-ray scattering factors Center for X-Ray Optics

Crystal structure Ashcroft and Mermin

1.8. Data Sources 13

http://physics.nist.gov/cuu/index.html
http://physics.nist.gov/PhysRefData/Compositions/
http://dx.doi.org/10.1039/b801115j
http://www.ati.ac.at/~neutropt/scattering/table.html
http://www-cxro.lbl.gov/

Periodic Table Documentation, Release 0.9

1.9 License

This program is in the public domain.

1.10 Disclaimer

This data has been compiled from a variety of sources for the user’s convenience and does not represent a critical
evaluation by the authors. While we have made efforts to verify that the values we use match published values, the
values themselves are based on measurements whose conditions may differ from those of your experiment.

1.11 Credits

Periodictable was written by Paul Kienzle and is now developed and maintained by the DANSE project.

We are grateful for the existence of many fine open source packages such as Pyparsing, NumPy and Python without
which this package would be much more difficult to write.

14 Chapter 1. User’s Guide

http://danse.us
http://pyparsing.wikispaces.com/
http://numpy.scipy.org/
http://www.python.org/

CHAPTER
TWO

REFERENCE

2.1 Core table

2.1.1 periodictable.core

Core classes for the periodic table.
* PeriodicTable The periodic table with attributes for each element.
Note: PeriodicTable is not a singleton class. Use periodictable.elements to access the common table.
e Element Element properties such as name, symbol, mass, density, etc.
* Isotope Isotope properties such as mass, density and neutron scattering factors.
* Ion lon properties such as charge.

Elements are accessed from a periodic table using table [number], table.name or table.symbol where
symbol is the two letter symbol. Individual isotopes are accessed using element [isotope]. Individual ions are
references using element . ion [charge]. There are presently no properties specific to both ion and isotope.

Helper functions:
¢ delayed_load() Delay loading the element attributes until they are needed.
* get_data_path () Return the path to the periodic table data files.
e define_elements () Define external variables for each element in namespace.
e default_table () Returns the common periodic table.
See Also:
Adding properties for details on extending the periodic table with your own attributes.
Custom tables for details on managing your own periodic table with custom values for the attributes.

class Ion (element, charge)
Bases: object

Periodic table entry for an individual ion. An ion is associated with an element. In addition to the element
properties (symbol, name, atomic number), it has specific ion properties (charge). Properties not specific to the
ion (i.e., charge) are retrieved from the associated element.

xray
X-ray scattering properties for the elements.

Reference: Center for X-Ray optics. Henke. L., Gullikson. E. M., and Davis. J. C.

15

Periodic Table Documentation, Release 0.9

class Isotope (element, isotope_number)
Bases: object

Periodic table entry for an individual isotope. An isotope is associated with an element. In addition to the
element properties (symbol, name, atomic number), it has specific isotope properties (isotope number, nuclear
spin, relative abundance). Properties not specific to the isotope (e.g., x-ray scattering factors) are retrieved from
the associated element.

abundance
Natural abundance.

Parameters isotope : Isotope
Returns abundance : float | %

Reference Coursey. J. S., Schwab. D. J, and Dragoset. R. A., NIST Atomic Weights and Isotopic
Composition Database.

density
Element density for natural abundance. For isotopes, return the equivalent density assuming identical
inter-atomic spacing as the naturally occuring material.

Parameters
iso_el [isotope or element] Name of the element or isotope.
Returns density : float | g/lcm”3

Reference: ILL Neutron Data Booklet, original values from CRC Handbook of Chemistry and Physics,
80th ed. (1999).

mass
Atomic weight.
Parameters isotope : Isotope
Returns
mass [float | u] Atomic weight of the element.

Reference: Coursey. J. S., Schwab. D. J, and Dragoset. R. A., NIST Atomic Weights and Isotopic Com-
position Database.

neutron
Neutron scattering factors, nuclear_spin and abundance properties for elements and isotopes.
Reference: Rauch. H. and Waschkowski. W., ILL Nuetron Data Booklet.

class Element (name, symbol, Z, ions, table)
Bases: object

Periodic table entry for an element. An element is a name, symbol and number, plus a set of properties. Indi-
vidual isotopes can be referenced as element[isotope_number]. Individual ionization states can be referenced
by element.ion[charge].

add_isotope (number)
Add an isotope for the element.

Parameters
number [integer] Isotope number, which is the number protons plus neutrons.

Returns None

16 Chapter 2. Reference

Periodic Table Documentation, Release 0.9

K_alpha
X-ray emission lines for various elements, including Ag, Pd, Rh, Mo, Zn, Cu, Ni, Co, Fe, Mn, Cr and Ti.
K_alpha is the average of K_alphal and K_alpha?2 lines.

K_alpha units
X-ray emission lines for various elements, including Ag, Pd, Rh, Mo, Zn, Cu, Ni, Co, Fe, Mn, Cr and Ti.
K_alpha is the average of K_alphal and K_alpha?2 lines.

K_betal
X-ray emission lines for various elements, including Ag, Pd, Rh, Mo, Zn, Cu, Ni, Co, Fe, Mn, Cr and Ti.
K_alpha is the average of K_alphal and K_alpha?2 lines.

K betal units
X-ray emission lines for various elements, including Ag, Pd, Rh, Mo, Zn, Cu, Ni, Co, Fe, Mn, Cr and Ti.
K_alpha is the average of K_alphal and K_alpha?2 lines.

covalent_radius
Add covalent_radius property to the elements.

Note: covalent radii data source is unknown.

covalent_radius_uncertainty
Add covalent_radius uncertainty property to the elements.

covalent_radius_units
Add covalent_radius units property to the elements.

crystal_structure
Add crystal_structure property to the elements.

Reference: Ashcroft and Mermin.

density
Element density for natural abundance. For isotopes, return the equivalent density assuming identical
inter-atomic spacing as the naturally occuring material.

Parameters
iso_el [isotope or element] Name of the element or isotope.
Returns density : float | g/cm”3

Reference: ILL Neutron Data Booklet, original values from CRC Handbook of Chemistry and Physics,
80th ed. (1999).

interatomic_distance
Estimated interatomic distance from atomic weight and density. The distance between isotopes is assumed
to match that between atoms in the natural abundance.

Parameters
element [Element] Name of the element whose interatomic distance needs to be calculated.
Returns distance : float| A

Interatomic distance is computed using:
d = atomic_weight/ (density+*0.602214179))"(1/3).
with units:

((g/mol)/ ((g/cm”3) (atoms/mol)) (10"8A/cm”3)"{1/3} = A

2.1.

Core table 17

Periodic Table Documentation, Release 0.9

ionic_radius
Ionic radii for various charges.These values are directly from CrysFML.

isotopes
List of all isotopes

magnetic_ff
Magnetic Form Fators. These values are directly from CrysFML.

Reference: Brown. P. J.(Section 4.4.5) International Tables for Crystallography Volume C, Wilson.
A.J.C.(ed).

mass
Atomic weight.

Parameters isotope : Isotope
Returns
mass [float | u] Atomic weight of the element.

Reference: Coursey. J. S., Schwab. D. J, and Dragoset. R. A., NIST Atomic Weights and Isotopic Com-
position Database.

neutron
Neutron scattering factors, nuclear_spin and abundance properties for elements and isotopes.

Reference: Rauch. H. and Waschkowski. W., ILL Nuetron Data Booklet.

number_ density
Estimate the number density from atomic weight and density. The density for isotopes is assumed to match
that of between atoms in natural abundance.

Parameters

element [element] Name of the element whose number density needs to be calculated.
Returns

Nb [float | unitless] Number density of a element.

xray
X-ray scattering properties for the elements.

Reference: Center for X-Ray optics. Henke. L., Gullikson. E. M., and Davis. J. C.

class PeriodicTable (table='default’)
Bases: object

Defines the periodic table of the elements with isotopes. Individidual elements are accessed by name,
symbol or atomic number. Individual isotopes are addressable by element [mass_number] or
elements.isotope (element name),elements.isotope (element symbol).

For example, the following all retrieve iron:

>>> from periodictable import =«
>>> print elements[26]

Fe

>>> print elements.Fe

Fe

>>> print elements.symbol ('Fe’)
Fe

>>> print elements.name(’iron’)

18 Chapter 2. Reference

Periodic Table Documentation, Release 0.9

Fe
>>> print elements.isotope(’'Fe’)
Fe

To get iron-56, use:

>>> print elements[26] [56]

56-Fe

>>> print elements.Fe[56]

56-Fe

>>> print elements.isotope ('’ 56-Fe’)
56-Fe

Deuterium and tritium are defined as ‘D’ and ‘T’. Some neutron properties are available in elements [0].
To show all the elements in the table, use the iterator:
>>> from periodictable import =«
>>> for el in elements: # lists the element symbols
print el.symbol,el.name
n neutron

H hydrogen
He helium

Uuh ununhexium
Note: Properties can be added to the elements as needed, including mass, nuclear and X-ray scattering cross
sections. See section Adding properties for details.

isotope (input)
Lookup the element or isotope in the periodic table. Elements are assumed to be given by the standard
element symbols. Isotopes are given by number-symbol, or ‘D’ and ‘T’ for 2-H and 3-H.

Parameters
input [string] Element name or isotope to be looked up in periodictable.
Returns Element
Raises ValueError if element or isotope is not defined.
Example Print the element corresponding to ‘58-Ni’.
>>> import periodictable

>>> print periodictable.elements.isotope (’58-Ni’)
58-Ni

list (*props, **kw)
Print a list of elements with the given set of properties.
Parameters
propl, prop2, ... [string] Name of the properties to print
format: string Template for displaying the element properties, with one % for each property.
Returns None

Example Print a table of mass and density.

2.1. Core table 19

Periodic Table Documentation, Release 0.9

>>> from periodictable import elements
>>> elements.list (/' symbol’, ' mass’,’density’,

L. format=" : u g/cm”~3")
H : 1.01 u 0.07 g/cm”3
He: 4.00 u 0.12 g/cm”"3
Li: 6.94 u 0.53 g/cm”3

Bk: 247.00 u 14.00 g/cm”"3
name (input)

Lookup an element given its name.

Parameters
input [string] Element name to be looked up in periodictable.

Returns Element
Raises ValueError if element does not exist.
Example Print the element corresponding to ‘iron’.

>>> import periodictable

>>> print periodictable.elements.name (’iron’)
Fe

symbol (input)
Lookup the an element in the periodic table using its symbol. Symbols are included for ‘D’ and “T’,
deuterium and tritium.

Parameters
input [string] Element symbol to be looked up in periodictable.
Returns Element
Raises ValueError if the element symbol is not defined.
Example Print the element corresponding to ‘Fe’.
>>> import periodictable

>>> print periodictable.elements.symbol ('Fe’)
Fe

delayed_load (all_props, loader, element=True, isotope=False, ion=False)
Delayed loading of an element property table. When any of property is first accessed the loader will be called
to load the associated data. The help string starts out as the help string for the loader function. The attribute
may be associated with any of Tsotope, Ton, or Element. Some properties, such as mass, have both an
isotope property for the mass of specific isotopes, as well as an element property for the mass of the collection
of isotopes at natural abundance. Set the keyword flags element, isotope and/or ion to specify which of these
classes will be assigned specific information on load.

define_elements (table, namespace)
Define external variables for each element in namespace. Elements are defined both by name and by symbol.

This is called from ___init__ as:

elements = core.default_table()
_all__ += core.define_elements (elements, globals())

20 Chapter 2. Reference

Periodic Table Documentation, Release 0.9

Parameters
table [PeriodicTable] Set of elements
namespace [dict] Namespace in which to add the symbols.

Returns [string, ...] A sequence listing the names defined.

Note: This will only work for the namespace globals(), not locals()!

get_data_path (data)
Locate the directory for the tables for the named extension.

Parameters

data [string] Name of the extension data directory. For example, the xsf extension has data in
the ‘xsf’ data directory.

Returns string Path to the data.

default_table (table=None)
Return the default table unless a specific table has been requested.

This is to be used in a context like:

def summary (table=None) :
table = core.default_table(table)

2.2 Chemical formula operations

2.2.1 periodictable.formulas

Chemical formula parser.

class Formula (value=None, density=None, name=None)
Bases: object

Simple chemical formula representation. This is designed for calculating molar mass and scattering length
density, not for representing bonds or atom positions. We preserve the structure of the formula so that it can be
used as a basis for a rich text representation such as matplotlib TeX markup.

Parameters
Jormula [see below] Chemical formula.
density [float | g/cm**3] Material density.
name [string] Common name for the molecule.
Exceptions ValueError : invalid formula initializer
Formula initializers can have a variety of forms:
estring: m = Formula(“CaCO3+6H20”)
For full details see Formula grammar
estructure: m = Formula([(1,Ca),(2,C),(3, O),(6,[(2,H),(1,0)]])
eformula math: m = Formula(“CaCO3”) + 6*Formula(“H20”)

eanother formula (makes a copy): m = Formula(Formula(“CaCO3+6H20))

2.2. Chemical formula operations 21

http://matplotlib.sourceforge.net/users/mathtext.html

Periodic Table Documentation, Release 0.9

ean atom: m = Formula(Ca)
enothing: m = Formula()

neutron_sld (wavelength=1)
Neutron scattering information for the molecule.

Parameters
wavelength [float | A] Wavelength of the neutron beam.
Returns sid : (float, float, float) | 10"-6 inv A2

Neutron scattering length density is returned as the tuple (real, imaginary, incoherent), or as
(None, None, None) if the mass density is not known.

volume (packing_factor="hcp’)
Estimate molecular volume.

The crystal volume can be estimated from the element covalent radius and the atomic packing factor using:

packing_factor = N_atoms V_atom / V_crystal

Packing factors for a number of crystal lattice structures are defined.

Table 2.1: Crystal lattice names and packing factors

Code Description Formula Packing factor

cubic simple cubic pi 1/6 0.52360

bce body-centered cubic pisqrt(3)/8 | 0.68017

hep hexagonal close-packed | pi 1/sqrt(18) | 0.74048

fcc face-centered cubic pi 1/sqrt(18) | 0.74048

diamond | diamond cubic pi sqrt(3)/16 | 0.34009
Parameters

packing_factor = ‘hep’ [float or string] Atomic packing factor. If packing_factor is the
name of a crystal lattice, use the lattice packing factor.

Returns volume : float | A*3 Molecular volume.
Raises ValueError : lattice is not defined
xray_sld (energy=None, wavelength=None)
X-ray scattering length density for the molecule.
Parameters
energy [float | keV] Energy of atom.
wavelength [float | A] Wavelength of atom.

Returns sid : (float, float) | inv A*2 X-ray scattering length density is return as the tuple (real,
imaginary), or as (None, None) if the mass density is not known.

atoms
{ atom: count, ... }

Composition of the molecule. Referencing this attribute computes the count as the total number of each
element or isotope in the chemical formula, summed across all subgroups.

22 Chapter 2. Reference

Periodic Table Documentation, Release 0.9

hill
Formula

Convert the formula to a formula in Hill notation. Carbon appears first followed by hydrogen then the
remaining elements in alphabetical order.

mass
atomic mass units u (C[12] = 12 u)

Atomic mass of the molecule.
Referencing this attribute computes the mass of the chemical formula.

formula_grammar (fable=None)
Construct a parser for molecular formulas.

Parameters

table = None [PeriodicTable] If table is specified, then elements and their associated fields will
be chosen from that periodic table rather than the default.

Returns parser : pyparsing.ParserElement The parser.parseString () method returns a
list of pairs (count,fragment), where fragment is an isotope, an element or a list of pairs
(count,fragment).

2.3 Covalent radius

2.3.1 periodictable.covalent_radius

This module adds the following fields to the periodic table
e covalent_radius
¢ covalent_radius_uncertainty
* covalent_radius_units = ‘angstrom’
Use init () toinitialize a private table.
Data is taken from Cordero 2008 '. The abstract of this paper reads as follows:

A new set of covalent atomic radii has been deduced from crystallographic data for most of the elements
with atomic numbers up to 96. The proposed radii show a well behaved periodic dependence that allows
us to interpolate a few radii for elements for which structural data is lacking, notably the noble gases.
The proposed set of radii therefore fills most of the gaps and solves some inconsistencies in currently
used covalent radii. The transition metal and lanthanide contractions as well as the differences in covalent
atomic radii between low spin and high spin configurations in transition metals are illustrated by the
proposed radii set.

Notes:

1. Values are averages only. The particular radius can be highly dependent on oxidation state and chemical com-
pound.

2. The paper lists values for multiple spin states on select elements. We are using sp3 for carbon and low spin for
manganese, iron and cobalt.

3. Elements with zero or one measurements of covalent radius are assigned an uncertainty of 0.00. These are He,
Ne, Pm, At, Rn, Fr, Ac, Pa.

I Beatriz Cordero, Verénica Gémez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverrfa, Eduard Cremades, Flavia Barragdn and Santiago
Alvarez. Covalent radii revisited. Dalton Trans., 2008, 2832-2838. doi:10.1039/b801115j

2.3. Covalent radius 23

http://dx.doi.org//10.1039/b801115j

Periodic Table Documentation, Release 0.9

4. Elements above 96 are assigned a covalent radius and uncertainty of None.

5. Radii are measured from bonds to C, N or O. The choice of which compound was used is element dependent.
Details are available in the references.

init (table, reload=False)
Add the covalent radius property to a private table. Use reload = True to replace the covalent radius property on
an existing table.

2.4 Crystal structure

2.4.1 periodictable.crystal_structure

Crystal structure data.

Adds crystal_structure to the periodic table. Each crystal structure is a dictionary which contains the key ‘symmetry’.
Depending on the value of crystal_structure[’symmetry’], one or more parameters ‘a’, ‘c/a’, ‘b/a’, ‘d’, and ‘alpha’ may
be present according to the following table:

Table 2.2: Crystal lattice parame-

ters
Symmetry Parameters
atom
diatom d
BCC a
fee a
hcp cla, a
Tetragonal cl/a, a
Cubic a
Diamond a
Orthorhombic | c/a, a, b/a
Rhombohedral | a, alpha
SC a
Monoclinic

Example:

>>> import periodictable as elements

>>> print elements.C.crystal_structure[’ symmetry’]
Diamond

>>> print elements.C.crystal_structure[’a’]

3.57

This data is from Ashcroft and Mermin.

init (table, reload=False)

2.5 Density

2.5.1 periodictable.density

The following properties are added:

24 Chapter 2. Reference

Periodic Table Documentation, Release 0.9

* density

¢ density_units (g/cm”3) Densities for solids and liquids are given as specific gravities at 20 C unless other wise
indicated by density_caveat. Densities for gaseous elements are given for the liquids at their boiling points.
Missing data are represented by None.

* density_caveat Comments on the density, if not taken in standard conditions.
¢ interatomic_distance
* interatomic_distance_units (angstrom) Interatomic distance estimated from element density.
e number_density
* number_density_units (unitless) Number density estimated from mass and density.
Density for the isotope is computed assuming that the atomic spacing is the same as that for the element in the natural

abundance.

>>> from periodictable import D, H

>>> print "H :",H.density,", D :",D.density

H: 0.0708 , D : 0.141475093639

>>> print (D.density/H.density) / (D.mass/H.mass)
1.0

The following plot shows density for all elements:

Density for elements

25
2
“1 15 |

Density of element

100

Element number

2.5. Density 25

Periodic Table Documentation, Release 0.9

From the X-ray data book: http://xdb.Ibl.gov/Section5/Sec_5-2.html
Data were taken mostly from 2. These values are reproduced in °.

density (iso_el)
Element density for natural abundance. For isotopes, return the equivalent density assuming identical inter-
atomic spacing as the naturally occuring material.

Parameters
iso_el [isotope or element] Name of the element or isotope.
Returns density : float | g/lcm”3
Reference: ILL Neutron Data Booklet, original values from CRC Handbook of Chemistry and Physics, 80th
ed. (1999).
init (table, reload=False)

interatomic_distance (element)
Estimated interatomic distance from atomic weight and density. The distance between isotopes is assumed to
match that between atoms in the natural abundance.

Parameters
element [Element] Name of the element whose interatomic distance needs to be calculated.
Returns distance : float | A

Interatomic distance is computed using:

d = atomic_weight/ (density*0.602214179))"(1/3).

with units:

((g/mol)/ ((g/cm”3) (atoms/mol)) (10"8A/cm”3)"{1/3} = A

number_ density (element)
Estimate the number density from atomic weight and density. The density for isotopes is assumed to match that
of between atoms in natural abundance.

Parameters
element [element] Name of the element whose number density needs to be calculated.
Returns

Nb [float | unitless] Number density of a element.

2.6 Mass

2.6.1 periodictable.mass

Adds average mass for the elements:
* mass

* mass_units (‘u’) The atomic mass averaged over natural abundances.

2 Lide. D. R., Ed., CRC Handbook of Chemistry and Physics, 80th ed. (CRC Press, Boca Raton, Florida, 1999)
3 The ILL Neutron Data Booklet, Second Edition.

26 Chapter 2. Reference

http://xdb.lbl.gov/Section5/Sec_5-2.html

Periodic Table Documentation, Release 0.9

Adds mass and abundance information for isotopes:

* mass

¢ mass_units (‘u’) The individual isotope mass.

¢ abundance

* abundance_units (‘%’) Natural abundance for the isotope.
Atomic Weights and Isotopic Composition *.

The atomic weights are available for elements 1 through 112, 114, & 116 and isotopic compositions or abundances are
given when appropriate. The atomic weights data were published by Coplen ° in Atomic Weights of the Elements 1999,
(and include changes reported from the 2001 review in Chem. Int., 23, 179 (2001)) and the isotopic compositions data
were published by Rosman © and Taylor ’ in Isotopic Compositions of the Elements 1997. The relative atomic masses
of the isotopes data were published by Audi ® and Wapstra ° in the 1995 Update To The Atomic Mass Evaluation.

This data has been compiled from the above sources for the user’s convenience and does not represent a critical
evaluation by the NIST Physics Laboratory. http://physics.nist.gov/PhysRefData/Compositions/

Neutron mass from NIST Reference on Constants, Units, and Uncertainty http://physics.nist.gov/cuu/index.html

abundance (isofope)
Natural abundance.

Parameters isorope : Isotope
Returns abundance : float | %

Reference Coursey. J. S., Schwab. D. J, and Dragoset. R. A., NIST Atomic Weights and Isotopic
Composition Database.

getval (str)
init (table, reload=False)

mass (isotope)
Atomic weight.

Parameters isorope : Isotope
Returns

mass [float | u] Atomic weight of the element.

Reference: Coursey. J. S., Schwab. D. J, and Dragoset. R. A., NIST Atomic Weights and Isotopic Composition
Database.

2.7 Neutron scattering potentials

2.7.1 periodictable.nsf

Neutron scattering factors for the elements and isotopes.

4 Coursey. J. S., Schwab. D. J., and Dragoset. R. A., NIST, Physics Laboratory, Office of Electronic Commerce in Scientific and Engineering
Data.

5 Coplen. T. B. : U.S. Geological Survey, Reston, Virginia, USA.

6 Rosman. K. J. R. : Department of Applied Physics, Curtin University of Technology, Australia.

7 Taylor. P. D. P. : Institute for Reference Materials and Measurements, European Commission, Belgium.

8 Audi. G. : Centre de SpectromA®©trie NuclA®©aire et de SpectromA©trie de Masse, Orsay Campus, France.

 Wapstra. A. H. : National Institute of Nuclear Physics and High-Energy Physics, Amsterdam, The Netherlands.

2.7. Neutron scattering potentials 27

http://physics.nist.gov/PhysRefData/Compositions/
http://physics.nist.gov/cuu/index.html

Periodic Table Documentation, Release 0.9

For details of neutron scattering factor values, see Neut ron. The property is set to None if there is no neutron
scattering information for the element. Individual isotopes may have their own scattering information.

Example
Print a table of coherent scattering length densities for isotopes of a particular element:

>>> import periodictable
>>> for iso in periodictable.Ni:
if iso.neutron.has_sld():
A print iso,iso.neutron.sld() [0]
58-Ni 13.152605395
60-Ni 2.55745104902
61-Ni 6.94165284735
62-Ni -7.94636575947
64-Ni -0.337948888621

Details

There are a number of functions available in periodictable.nsf
neutron_energy () Return energy given wavelength.
neutron_wavelength () Return wavelength given energy.
neutron_scattering () Computes SLD, cross sections and penetration depth for a compound.
neutron_sld () Computes SLD for a compound.
energy_dependent_table () Lists energy dependent isotopes.
sld_table () Lists all elements in natural abundance.

absorption_comparison_table () Compares element.neutron.b_c_i and ele-
ment.neutron.absorption.

coherent_comparison_table () Compares element.neutron.b_c and element.neutron.coherent.
total_comparison_table () Compares element.neutron.b_c and element.neutron.coherent.
For private tables use init () to set the data.

The neutron scattering information table is reproduced from the Atomic Institute for Austrian Universities (2007
version):

http://www.ati.ac.at/~neutropt/scattering/table.html

The above site has references to the published values for every entry in the table. We have included these in the
documentation directory associated with the periodictable package.

References
class Neutron ()
Bases: object

Neutron scattering factors are attached to each element in the periodic table for which values are available. If
no information is available, then the neutron field of the element will be None. Even when neutron information
is available, it may not be complete, so individual fields may be None.

The following fields are used:

28 Chapter 2. Reference

http://www.ati.ac.at/~neutropt/scattering/table.html

Periodic Table Documentation, Release 0.9

*b_c (fm) Bounds coherent scattering length.

*b_c_i (fm) Imaginary part of bound coherent scattering length. This is related to absorption cross section
by 2*pi/k where k = 2*pi/lambda with a factor of 100 for converting between barns and fm. b_c_i is
not available for all isotopes for which absorption cross sections have been measured.

*bp,bm (fm) Spin-dependent scattering for 1+1/2 and I-1/2 (not always available). Incoherent scattering
arises from the spin-dependent scattering b+ and b-. The Neutron Data Booklet '° gives formulas for
calculating coherent and incoherent scattering from b+ and b- alone.

*bp_i,bm_i (fm) Imaginary portion. See the Neutron Data Booklet ! for details.
*is_energy_dependent (boolean) Do not use this data if scattering is energy dependent.

ecoherent (barns) Coherent scattering cross section. In theory coherent scattering is related to bound
coherent scattering by 4*pi*b_c”*2/100. In practice, these values are different, with the following
table showing the largest relative difference:

Sc3% | Ti4% V 34% Mn 1% | Cd 4%
Te 4% | Xe 9% Sm 100% | Eu46% | Gd 61%
Tb1% | Ho 11% | W 4% Au7% | Hg2%

*incoherent (barns) Incoherent scattering cross section.
total (barns) Total scattering cross section. This is just coherent+incoherent.

eabsorption (barns) Absorption cross section at 1.798 angstroms. Scale to your beam by dividing by
periodictable.nsf. ABSORPTION_WAVELENGTH and multiplying by your wavelength.

For elements, the scattering cross-sections are based on the natural abundance of the individual isotopes. Indi-
vidual isotopes may have additional information as follows:

Property Description
abundance(%) Abundance used in elemental measurements.
nuclear_spin(string) | Spin on the nucleus: ‘0’, ‘1/2°, ‘3/2°, etc.

Each field above has a corresponding »_units attribute with the name of the units. For scattering calculations,
the scattering length density is the value of interest. This is computed from the number_density of the individual
elements, as derived from the element density and atomic mass.

Note: 1 barn =100 fm"2

has_sld()
Returns True if sld is defined for this element/isotope.

scattering (wavelength=1.798, energy=None)
Returns neutron scattering information for the element at natural abundance and density.

Warning: Incoherent SLD values have not been verified.

Parameters wavelength : float | A

Returns
sld [(float, float, float) | 107-6 / AN2] (real, imaginary, incoherent) scattering length density
xs [(float, float, float) | 1/cm] (coherent, absorption, incoherent) cross sections.

penetration [float | cm] 1/e penetration length.

Algorithm

10 Rauch, H. and Waschkowski, W. (2003) Neutron Scattering Lengths in ILL Neutron Data Booklet (second edition), A.-J. Dianoux, G. Lander,
Eds. Old City Publishing, Philidelphia, PA. pp 1.1-1 to 1.1-17.

2.7. Neutron scattering potentials 29

Periodic Table Documentation, Release 0.9

See neutron_scattering () for details.

sld (wavelength=1.798, energy=None)
Returns scattering length density for the element at natural abundance and density.

Warning: Incoherent SLD values have not been verified.

Parameters wavelength : float | A
Returns

sld [(float, float, float) | 10"-6 / A”2] (real, imaginary, incoherent) scattering length density.
Algorithm

See neutron_scattering () for details.

init (table, reload=False)
Loads the Rauch table from the neutron data book.

neutron_energy (wavelength)
Convert neutron wavelength to energy.

Parameters wavelength : float or vector | A
Returns energy : float or vector | meV
Algorithm E = 1/2 m v*2 = h”*2 /(2 m lambda’2)
h = planck’s constant in J s m = neutron mass in kg

neutron_wavelength (energy)
Convert neutron energy to wavelength.

Parameters energy : float or vector | meV

Returns wavelength : float or vector | A

Algorithm E = 1/2 m v*2 = h"2 /(2 m lambda”2)
lambda =sqrt (h*2/(2mE))
h = planck’s constant in J s m = neutron mass in kg

neutron_scattering (compound, density=None, wavelength=1.798, energy=None)
Computes neutron scattering cross sections for molecules.

Warning: Incoherent SLD values have not been verified.

Parameters

compound [Formula initializer] Chemical formula

density [float | g/cm”3] Mass density

wavelength 1.798 [float | A] Neutron wavelength.

energy [float | meV] Neutron energy. If energy is specified then wavelength is ignored.
Returns

sld [(float, float, float) | 107-6 / AN2] (real, imaginary, incoherent) scattering length density.

xs [(float, float, float) | 1/cm] (coherent, absorption, incoherent) cross sections.

penetration [float cm] 1/e penetration length of the beam

30 Chapter 2. Reference

Periodic Table Documentation, Release 0.9

Raises AssertionError : density is missing.

The coherent and incoherent cross sections are calculated from the bound scattering lengths for nuclei. The
actual cross sections depend on the incoming neutron energy and sample temperature, especially for light ele-
ments. For low energy neutrons (cold neutrons), the tabulated cross sections are generally a lower limit. The
measured incoherent scattering from hydrogen, for example, can be considerably larger (by more than 20%)
than its bound value. For example, the incoherent scattering cross section of H20 is 5.621/cm as computed
from these tables compared to ~7.0/cm as measured with 5 meV neutrons at 290K. '

The scattering factor tables are not self consistent. The following functions show discrepencies between the
various measurements of the scattering potential:

absorption_comparison_table ()
coherent_comparison_table ()

total_comparison_table ()
Algorithm

We first need to average quantities for the unit cell of the molecule.

Molecular weight m (g/mol) is the sum of the weights of each component:
m:Znimi for each atomi =1,2,... 2.1

Cell volume V (A”3/molecule) is molecular weight m over density rho, with a correction for units based on
Avogadro’s number N_A (atoms/mol) and the length conversion 1e8 A/cm:

V =m/pl1/Na (10%)3 (2.2)
Number density N is the number of scatterers per unit volume:
N=> n/V (23)

Coherent scattering cross section sigma_c of the molecule is computed from the average scattering length of its
constituent atoms, weighted by their frequency.

be =Y nilm(bc)/ > m (2.4)
This is converted to a scattering cross section and scaled by 1 barn = 100 fm”?2:
0. = 4mb? /100 (2.5)

Similarly, the absorption cross section sigma_a and the total cross section sigma_s can be computed from the
corresponding cross sections of the constituent elements, already expressed in barns:

Oq = Znioai/zni (2.6)
o5 = Zmasi/ Z n; 2.7)

The total cross section is just the coherent plus incoherent cross sections:

and

0; =05 — O¢ (2.8)

1 May, R.P, Ibel, K. and Haas, J. (1982) The forward scattering of cold neutrons by mixtures of light and heavy water. J. Appl. Cryst. 15, 15-19.

2.7. Neutron scattering potentials 31

Periodic Table Documentation, Release 0.9

The absorption cross sections are tabulated at wavelength 1.798 A. In the thermal neutron energy range the
absorption cross section is assumed to scale linearly with wavelength, '> and can be adjusted with a simple
multiplication:

Oa = OaA/ Ao = 05 A/1.798 (2.9)

For the scattering equations, the primary quantity of interest is the scattering potential b = bp + i bpp. For most
elements, the scattering potential at cold neutron and thermal neutron energies is simply related to the neutron
energy, with no change in the real portion and a linear scaling of the imaginary portion with energy. The value
of b is dominated by the bound coherent potential, with a small contribution from the incoherent scattering cross
sections.

The potentials are related to the scattering cross sections as follows:

o, = 4m|b.|? (2.10)

and
oo = 4mb" [k for k = 27 /A (2.11)

and
o; = 4m|b;|? (2.12)

Transforming these we get:

b = b, (2.13)

and
b =0,/(2)) (2.14)

and
bine = \/0i/(4m) (2.15)

The incoherent potential binc can be treated primarily as an absorption potential in large scale structure calcula-
tions, with the complex potential b approximated by bp + i (bpp + binc).

The scattering potential is usually expressed as a scattering length density for calculation purposes. This is just
the number density of the scatterers times their scattering potential:

pre = Nb,. (2.16)

and
pim = Nog/(2)) (2.17)

pine = N\/o:/4m (2.18)

and

Scattering cross section:

Yeoh = Nog (2.19)
and
Zinc = Nai (220)
and
Za.bs = Naa (221)
1/e penetration depth d:
d= 1/(Ecoh + Yine + Zabs) (2.22)

Including unit conversion with u=107-6, the full equations are:

pre1/? = (N/3) (be fm) (1075 / fm) (10° u) (2.23)

12 Lynn, J.E. and Seeger, P.A. (1990) Resonance effects in neutron scattering lengths of rare-earth nuclides. Atomic Data and Nuclear Data Tables
44, 191-207.

13 Sears, V. F. (1999) 4.4.4 Scattering lengths for neutrons. In Wilson & Prince eds. Intl. Tables for Crystallography C Kluwer Academic
Publishers. pp 448-449.

32 Chapter 2. Reference

Periodic Table Documentation, Release 0.9

and
pim 1/? = (N/?) (¢, barn) (10782 /barn) /(2) (10° u) (2.24)

and
pinc /% = (N/A?) \/ (o; barn) /(47) (100 fm? /barn) (10=° /fm) (106 u) (2.25)

and
Yeon 1/cm = (N/?) (0. barn) (10782 /barn) (10® /cm) (2.26)

and
Yine 1/cm = (N/3) (0; barn) (10782 /barn) (10% /cm) (2.27)

and
Yabs 1/cm = (N/?) (o, barn) (10782 /barn) (10® /cm) (2.28)

and
dem =1/(Zeon 1/em + Yipe 1/em + Xaps 1/cm) (2.29)

neutron_sld (*args, **kw)
Computes neutron scattering length densities for molecules.

Warning: Incoherent SLD values have not been verified.

Parameters

compound [Formula initializer] Chemical formula

density [float | g/cm”3] Mass density

wavelength [float | A] Neutron wavelength.

energy [float | meV] Neutron energy. If energy is specified then wavelength is ignored.
Returns

sld [(float, float, float) | 107-6 / AN2] (real, imaginary, incoherent) scattering length density.
Raises AssertionError : density is missing.

Returns the scattering length density of the compound. See neutron_scattering () for details.

sld_plot (table=None)
Plots SLD as a function of element number.

Parameters
table [PeriodicTable] The default periodictable unless a specific table has been requested.
Returns None

absorption_comparison_table (table=None, tol=None)
Prints a table of 10¥*b_c_i and -0.01*absorption/(2)(1.798) for each isotope where b_c_i exists. This is used to
checking the integrity of the data and formula.

The factor of 1.798 is the neutron wavelength at which the absorption is tallied. The factor of 0.01 transforms
from barn/A"3*1/A to 107-6 /A2, The factor of 10 transforms from fm/A”3 to 10N-6/A2.

Parameters
table [PeriodicTable] The default periodictable unless a specific table has been requested.
tol 1e-3: float Show differences greater than this amount.

Returns None

2.7. Neutron scattering potentials 33

Periodic Table Documentation, Release 0.9

coherent_comparison_table (table=None, tol=None)
Prints a table of 4*pi*b_c”2/100 and coherent for each isotope. This is useful for checking the integrity of the
data and formula.

The table only prints where b_c exists.
Parameters
table [PeriodicTable] The default periodictable unless a specific table has been requested.
Returns None

incoherent_comparison_table (fable=None, tol=None)
Prints a table of incoherent computed from total and b_c with incoherent.

Parameters
table [PeriodicTable] The default periodictable unless a specific table has been requested.
Returns None

total_comparison_table (table=None, tol=None)
Prints a table of neutron.total and sum coh,inc for each isotope where these exist. This is used to checking the
integrity of the data and formula.

Parameters
table [PeriodicTable] The default periodictable unless a specific table has been requested.
Returns None

energy_dependent_table (table=None)
Prints a table of energy dependent isotopes.

Parameters
table [PeriodicTable] If table is not specified, use the common periodic table.
Returns None

sld_table (wavelength=1, table=None, isotopes=True)
Scattering length density table for wavelength 4.75 A.

Parameters
table [PeriodicTable] If table is not specified, use the common periodic table.
isotopes = True [boolean] Whether to consider isotopes or not.

Returns None

neutron_sld_from_atoms (*args, **kw)
Deprecated since version 0.91: neutron_s1d () now accepts dictionaries of {atom: count} directly.

2.8 X-ray scattering potentials

2.8.1 periodictable.xsf

This module has one class and nine fuctions.
Xray X-ray scattering properties for the elements.

The following attributes are added to each element:

34 Chapter 2. Reference

Periodic Table Documentation, Release 0.9

Xray.sftable () Three column table of energy vs. scattering factors f1, f2.

Xray.scattering factors () Returns f1, f2, the X-ray scattering factors for the given wave-
lengths interpolated from sftable.

Xray.£0 () Returns fO for the given vector Q, with q_i in [0,24pi] inv Ang.

Xray.sld() Returns scattering length density (real, imaginary) for the given wavelengths or energies.
The following functions are available for X-ray scatting information processing:

xray_wavelength () Finds X-ray wavelength in angstroms given energy in keV.

xray_energy () Finds X-ray energy in keV given wavelength in angstroms.

init () Initializes a periodic table with the Lawrence Berkeley Laboratory Center for X-Ray Optics
xray scattering factors.

init_spectral_lines () Setsthe K_alpha and K_betal wavelengths for select elements.
sld_table () Prints the xray SLD table for the given wavelength.
xray_sld () Computes xray scattering length densities for molecules.

xray sld from atoms () The underlying scattering length density calculator. This works with a
dictionary of atoms and quanties directly.

emission_table () Prints atable of emission lines.

K_alpha, K_betal (Angstrom): X-ray emission lines for various elements, including Ag, Pd, Rh, Mo, Zn, Cu, Ni,
Co, Fe, Mn, Cr and Ti. K_alpha is the average of K_alphal and K_alpha?2 lines.

X-ray scattering factors: Low-Energy X-ray Interaction Coefficients: Photoabsorption, scattering and reflection for
E in 30 to 30,000 eV, and Z in 1 to 92.

Note: For custom tables,use init () and init_spectral_lines () to setthe data.

X-ray f1 and f2 tables

The data for the tables is stored in the periodictable/xsf. directory. The following information is from
periodictable/xsf/read.me, with minor formatting changes. These [~ .nff] files were used to generate
the tables published in reference '*. The files contain three columns of data:

Energy(ev), £_1, f_2,

where f_I and f_2 are the atomic (forward) scattering factors. There are 500+ points on a uniform logarithmic mesh
with points added 0.1 eV above and below “sharp” absorption edges. The tabulated values of f_I contain a relativistic,
energy independent, correction given by:

Zx = Z — (Z/82.5)"(2.37).

Note: Below 29 eV f_I is set equal to -9999.

The atomic photoabsorption cross section, mu_a, may be readily obtained from the values of f_2 using the relation:
mu_a = 2xr_0Oxlambdaxf_2

where r_0 is the classical electron radius, and lambda is the wavelength. The index of refraction for a material with N
atoms per unit volume is calculated by:

14 B. L. Henke, E. M. Gullikson, and J. C. Davis. “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000
eV, Z=1-92”, Atomic Data and Nuclear Data Tables 54 no.2, 181-342 (July 1993).

2.8. X-ray scattering potentials 35

Periodic Table Documentation, Release 0.9

n =1 - N*xr_0x (lambda) "2 (f_1+if_2)/(2*pi) .

These (semi-empirical) atomic scattering factors are based upon photoabsorption measurements of elements in their
elemental state. The basic assumption is that condensed matter may be modeled as a collection of non-interacting
atoms. This assumption is in general a good one for energies sufficiently far from absorption thresholds. In the
threshold regions, the specific chemical state is important and direct experimental measurements must be made.

These tables are based on a compilation of the available experimental measurements and theoretical calculations. For
many elements there is little or no published data and in such cases it was necessary to rely on theoretical calcu-
lations and interpolations across Z. In order to improve the accuracy in the future considerably more experimental
measurements are needed.

Please send any comments about the tables to EMGullikson @Ibl.gov.

Table 2.3: Note that the following elements
have been updated since the publication of
Ref. 1 in July 1993.

Element Updated Energy Range
Mg 1/15/94 30-50 eV

Al 1/15/94 30-73 eV

Si 1/15/94 30-100 eV

Au 11/7/94 2000-6500 eV
Li 11/15/94 2000-30000 eV
Si 6/95 30-500 eV

Fe 10/95 600-800 eV
Mo 11/97 10-930 eV

Be 8/04 40-250 eV

Mo 8/04 25-60 eV

w 8/04 35-250 eV

Ru 8/04 40-1300 eV

Ti 8/04 20-150 eV

Sc 4/06 50-1300 eV

Gd 6/07 12-450 eV

La 6/07 14-440 eV

Data available at:
1. http://henke.Ibl.gov/optical_constants/asf.html
2. http://henke.lbl.gov/optical_constants/update.html

class Xray (element)
Bases: object

X-ray scattering properties for the elements. Refer help(periodictable.xsf) from command prompt for details.

£0 (Q)
Isotropic X-ray scattering factors fO for the input Q.

Parameters

Q [float or vector in [0, 24*pi] | inv A] X-ray scattering properties for the elements.
Returns

S0 [float] Values outside the valid range return NaN.

Note: f0 is often given as a function of sin(theta)/lambda whereas we are using Q =
4*pi*sin(theta)/lambda, or in terms of energy Q = 4*pi*sin(theta)*E/(h c).

36 Chapter 2. Reference

mailto:EMGullikson@lbl.gov
http://henke.lbl.gov/optical_constants/asf.html
http://henke.lbl.gov/optical_constants/update.html

Periodic Table Documentation, Release 0.9

Reference D. Wassmaier, A. Kerfel, Acta Crystallogr. AS51 (1995) 41e6.
http://dx.doi.org/10.1107/S0108767394013292

scattering factors (energy)
X-ray scattering factors f*,f’°.

Parameters
energy [float or vector | keV] X-ray energy.
Returns
scattering_factors [(float, float)] Values outside the range return NaN.

Algorithm Linear interpolation within the Henke Xray scattering factors database at the
Lawrence Berkeley Laboratory Center for X-ray Optics.

s1d (wavelength=None, energy=None)
X ray scattering length density.

Parameters

wavelength [float or vector | A] Wavelength of the X-ray.

energy [float or vector | keV] Energy of the X-ray (if wavelength not specified).
Returns

sld [(float, float) | inv A"2] (real, imaginary) X-ray scattering length density.
Raises TypeError : neither wavelength nor energy was specified.

Algorithm The element SLD is r_eN(f1+1jf2), where r_e is the electron radius and N is number
density = density/mass * Avogadro’s Number.

The constants are available directly:

*r_ex = periodictable.xsf.electron_radius
N_Ax periodictable.constants.avogadro_number

Data comes from the Henke Xray scattering factors database at the Lawrence Berkeley Laboratory Center
for X-ray Optics.

sftable
X-ray scattering factor table (E,f1,f2)

init (table, reload=False)

init_spectral_lines (table)
Sets the K_alpha and K_betal wavelengths for select elements

xray_energy (wavelength)
Convert X-ray wavelength to energy.

Parameters wavelength : float or vector | A
Returns energy : float or vector | keV

xray_ wavelength (energy)
Convert X-ray energy to wavelength.

Parameters energy : float or vector | keV
Returns

Algorithm Use the formula:

2.8. X-ray scattering potentials 37

http://dx.doi.org/10.1107/S0108767394013292

Periodic Table Documentation, Release 0.9

lambda=hc/E
where:
h = planck’s constant in eV s ¢ = speed of light in m/s

xray_sld (compound, density=None, wavelength=None, energy=None)
Compute xray scattering length densities for molecules.

Parameters

compound [Formula initializer] Chemical formula initializer.

density [float | g/cm”3] Density of the compound.

wavelength [float | A] Wavelength of the X-ray.

energy [float | keV] Energy of the X-ray, if wavelength is not specified.
Returns

sld [(float, float) | 107-6 inv A2] (real, imaginary) scattering length density.
Raises AssertionError : density or wavelengthl/energy is missing.

xray_sld_from_atoms (*args, **kw)
Deprecated since version 0.91: xray_s1d () now accepts dictionaries of {atom: count} directly.

emission_table (table=None)
Prints a table of emission lines.

Parameters
table [PeriodicTable.] The default periodictable unless a specific table has been requested.
Returns None

sld_table (wavelength, table=None)
Prints the xray SLD table for the given wavelength.

Parameters

wavelength [float | A] X-ray wavelength.

table [PeriodicTable] The default periodictable unless a specific table has been requested.
Returns None

plot_xsf (el)
Plots the xray scattering factors for the given element.

Parameters e/ : Element

Returns None

2.9 Magnetic Form Factor

2.9.1 periodictable.magnetic_f£ff

Adds magnetic_ff[charge].t for t in jO, j2, j4, j6, and J. J should be the dipole approximation <j0> + (1 - 2/g) <j2>,
according to the documentation for CrysFML '3 , but that does not seem to be the case in practice.

15 Brown. P. J. (Section 4.4.5) International Tables for Crystallography Volume C, Wilson. A. J. C.(ed).

38 Chapter 2. Reference

Periodic Table Documentation, Release 0.9

class MagneticFormFactor ()
Bases: object

Magnetic form factor for the ion.
The available form factors are:
M = <j0> form factor coefficients

J = <j0> + C2 <j2> form factor coeffients
jn = <jn> form factor coefficients for n = 0, 2, 4, 6

Not all form factors are available for all ions. Use the expression hasattr (ion.magnetic_ff,
"<ff>") to test for the particular form factor <ff>. The form factor coefficients are a tuple (A, a, B, b, C,
¢, D). The following expression computes the M/jO and J form factors from the corresponding coefficients:

s = g*2 / 16 pi~2
ff = A exp(-a s72) + B exp(-b s72) + C exp(-c s”2) + D

The remaining form factors j2, j4 and j6 are scalled by an additional s"2. The form factor calculation is per-
formed by the <ff>_Q method for <ff>in M, J, jO, j2, j4, j6. For example, here is the calculation for the M form
factor for Fe"2+ computed at 0, 0.1 and 0.2:

>>> import periodictable

>>> ion = periodictable.Fe.ion[2]
>>> print ion.magnetic_ff[ion.charge] .M 0([0,0.1,0.2])
[1. 0.99935255 0.99741366]
J_Q(0)

Returns J scattering potential at Q (inverse Angstroms)
M _0(Q)

Returns jO scattering potential at Q (inverse Angstroms)
30_9(0)

Returns jO scattering potential at Q (inverse Angstroms)
J2_9(0)

Returns j2 scattering potential at Q (inverse Angstroms)
34.9(0)

Returns j4 scattering potential at Q (inverse Angstroms)
J6_9Q(0)

Returns j6 scattering potential at Q (inverse Angstroms)
M
j0
formfactor_0 (jO, q)
Returns the scattering potential for form factor jO at the given q.

formfactor_n (jn, q)
Returns the scattering potential for form factor jn at the given q.

init (table, reload=False)

2.9. Magnetic Form Factor 39

Periodic Table Documentation, Release 0.9

40

Chapter 2. Reference

CHAPTER
THREE

INDICES AND TABLES

e Index
e Module Index

41

Periodic Table Documentation, Release 0.9

42

Chapter 3. Indices and Tables

F)

periodictable.
periodictable.
.crystal_structure, 24

periodictable

periodictable.
periodictable.
periodictable.
periodictable.
periodictable.
periodictable.

core, 15
covalent_radius, 23

density, 24
formulas, 21
magnetic_ff, 38
mass, 26

nsf, 27

xsf, 34

MODULE INDEX

43

Periodic Table Documentation, Release 0.9

44

Module Index

A

absorption_comparison_table()
ictable.nsf), 33
abundance (periodictable.core.Isotope attribute), 16
abundance() (in module periodictable.mass), 27
add_isotope() (periodictable.core.Element method), 16
atoms (periodictable.formulas.Formula attribute), 22

C

coherent_comparison_table()
ictable.nsf), 33

covalent_radius (periodictable.core.Element attribute), 17

covalent_radius_uncertainty (periodictable.core.Element
attribute), 17

covalent_radius_units
attribute), 17

crystal_structure (periodictable.core.Element attribute),
17

(in module period-

(in module period-

(periodictable.core.Element

D

default_table() (in module periodictable.core), 21
define_elements() (in module periodictable.core), 20
delayed_load() (in module periodictable.core), 20
density (periodictable.core.Element attribute), 17
density (periodictable.core.Isotope attribute), 16
density() (in module periodictable.density), 26

E

Element (class in periodictable.core), 16

emission_table() (in module periodictable.xsf), 38

energy_dependent_table() (in module periodictable.nsf),
34

F

fO() (periodictable.xsf.Xray method), 36

formfactor_0() (in module periodictable.magnetic_ff), 39

formfactor_n() (in module periodictable.magnetic_ff), 39

Formula (class in periodictable.formulas), 21

formula_grammar() (in module periodictable.formulas),
23

INDEX

G

get_data_path() (in module periodictable.core), 21
getval() (in module periodictable.mass), 27

H

has_sld() (periodictable.nsf.Neutron method), 29
hill (periodictable.formulas.Formula attribute), 22

incoherent_comparison_table()
ictable.nsf), 34

init() (in module periodictable.covalent_radius), 24

init() (in module periodictable.crystal_structure), 24

init() (in module periodictable.density), 26

init() (in module periodictable.magnetic_ff), 39

init() (in module periodictable.mass), 27

init() (in module periodictable.nsf), 30

init() (in module periodictable.xsf), 37

init_spectral_lines() (in module periodictable.xsf), 37

(in module period-

interatomic_distance (periodictable.core.Element at-
tribute), 17

interatomic_distance() (in module periodictable.density),
26

Ion (class in periodictable.core), 15

ionic_radius (periodictable.core.Element attribute), 17
Isotope (class in periodictable.core), 15

isotope() (periodictable.core.PeriodicTable method), 19
isotopes (periodictable.core.Element attribute), 18

J

jO_Q() (periodictable.magnetic_f{f.MagneticFormFactor
method), 39

j2_Q(0 (periodictable.magnetic_ff.MagneticFormFactor
method), 39

j4_Q(0 (periodictable.magnetic_ff.MagneticFormFactor
method), 39

j6_Q(0) (periodictable.magnetic_f{f.MagneticFormFactor
method), 39

J_Q(O (periodictable.magnetic_ff.MagneticFormFactor
method), 39

45

Periodic Table Documentation, Release 0.9

K

K_alpha (periodictable.core.Element attribute), 16
K_alpha_units (periodictable.core.Element attribute), 17
K_betal (periodictable.core.Element attribute), 17
K_betal_units (periodictable.core.Element attribute), 17

L

list() (periodictable.core.PeriodicTable method), 19

M

M (periodictable.magnetic_ff.MagneticFormFactor at-
tribute), 39

M_Q() (periodictable.magnetic_ff.MagneticFormFactor
method), 39

magnetic_ff (periodictable.core.Element attribute), 18

MagneticFormFactor (class in periodictable.magnetic_ff),
38

mass (periodictable.core.Element attribute), 18

mass (periodictable.core.Isotope attribute), 16

mass (periodictable.formulas.Formula attribute), 23

mass() (in module periodictable.mass), 27

N

name() (periodictable.core.PeriodicTable method), 20

Neutron (class in periodictable.nsf), 28

neutron (periodictable.core.Element attribute), 18

neutron (periodictable.core.Isotope attribute), 16

neutron_energy() (in module periodictable.nsf), 30

neutron_scattering() (in module periodictable.nsf), 30

neutron_sld() (in module periodictable.nsf), 33

neutron_sld() (periodictable.formulas.Formula method),
22

neutron_sld_from_atoms() (in module periodictable.nsf),
34

neutron_wavelength() (in module periodictable.nsf), 30

number_density (periodictable.core.Element attribute),
18

number_density() (in module periodictable.density), 26

P

PeriodicTable (class in periodictable.core), 18
periodictable.core (module), 15
periodictable.covalent_radius (module), 23
periodictable.crystal_structure (module), 24
periodictable.density (module), 24
periodictable.formulas (module), 21
periodictable.magnetic_ff (module), 38
periodictable.mass (module), 26
periodictable.nsf (module), 27
periodictable.xsf (module), 34

plot_xsf() (in module periodictable.xsf), 38

S

scattering() (periodictable.nsf.Neutron method), 29

scattering_factors() (periodictable.xsf.Xray method), 37
sftable (periodictable.xsf.Xray attribute), 37

sld() (periodictable.nsf.Neutron method), 30

sld() (periodictable.xsf.Xray method), 37

sld_plot() (in module periodictable.nsf), 33

sld_table() (in module periodictable.nsf), 34

sld_table() (in module periodictable.xsf), 38

symbol() (periodictable.core.PeriodicTable method), 20

T

total_comparison_table() (in module periodictable.nsf),
34

Vv

volume() (periodictable.formulas.Formula method), 22

X

Xray (class in periodictable.xsf), 36

xray (periodictable.core.Element attribute), 18

xray (periodictable.core.lon attribute), 15

xray_energy() (in module periodictable.xsf), 37
xray_sld() (in module periodictable.xsf), 38

xray_sld() (periodictable.formulas.Formula method), 22
xray_sld_from_atoms() (in module periodictable.xsf), 38
xray_wavelength() (in module periodictable.xsf), 37

46

Index

	User's Guide
	Periodic Table of Elements
	Installing
	Basic usage
	Chemical Composition
	Bundling with py2exe
	Adding properties
	Custom tables
	Data Sources
	License
	Disclaimer
	Credits

	Reference
	Core table
	Chemical formula operations
	Covalent radius
	Crystal structure
	Density
	Mass
	Neutron scattering potentials
	X-ray scattering potentials
	Magnetic Form Factor

	Indices and Tables
	Module Index
	Index

