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Driven by the availability of modern software, Bayesian analysis is becoming more popular in
neutron and X-ray reflectometry analysis. The understandability and replicability of these analyses
may be harmed by inconsistencies in how the probability distributions central to Bayesian methods
are represented in the literature. Herein, we porvide advice on how to report the results of Bayesian
analysis as applied to neutron and X-ray reflectometry. This includes the clear reporting of initial
starting conditions, the prior probabilities, and results of any analysis, the posterior probabilities
that are the Bayesian equivalent of the error bar, to enable replicability and improve understanding.
We believe that this advice, grounded in our experience working in the field, will enable greater
analytical reproducibility among the reflectometry community, as well as improve the quality and
usability of results.

I. INTRODUCTION

Neutron and X-ray reflectometry are powerful tools
to probe the interfacial structure of materials [1]. How-
ever, as a result of the “phase-problem”, the analysis of
these techniques is ill-posed in nature, as there are mul-
tiple possible solutions [2]. This has led to the use of
Bayesian analysis, where our prior understanding of the
system, can help in our understanding of the results [3–5].
Recently, developments in the availability of computer
software for analysis that include Bayesian functional-
ity, such as the Refl1d, refnx, anaklasis, and RasCAL
[6–9] which implement methods from bumps, emcee, and
dynesty [10–12], have led to an increase in the utilisa-
tion of Bayesian methods by the reflectometry commu-
nity [13, 14].

Reflectometry analysis can be described in the most
simplistic terms as the comparison and refinement of a
model based on some parameters, x, to reproduce some
reflectivity data set, D. This refinement process is in-
volves comparing the model to the data via a statistical
test, such as the χ2-test, to produce a set of parameters
that reproduce well the experimental data. The input
for this refinement process is the model and some initial
parameter values, which may be absolute value or pa-
rameter ranges, which the output is a set of value for x
with associated error bars, which describe the mean and
standard deviation of a Gaussian posterior probability
distribution. Most analysis packages use some minimi-
sation algorithm to vary the parameters and therefore
obtain a set that are optimised with respect to the data,
with the implicit assumption that the model can and does
accurately describe the data.

The input required depends on the minimisation algo-
rithm being used, with some algorithms requiring a single
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starting guess (such as a traditional Newtonian methods)
and others taking a range of potential values (more com-
mon in stochastic approaches like differential evolution).
The nature of these inputs define the results of the anal-
ysis, therefore it is of the utmost importance that these
are share as part of a publication describing the work.
Furthermore, often the minimisation is performed with
bounds in place, defining parameter values to lie within
a given range. This range can be thought of as a probabil-
ity distribution, where values of x outside of this range
have a probability of 0. The use of such a constraint
leads to a Bayesian approach to our anlaysis, where we
use some prior probability to inform our analysis.

The final values from the minimisation algorithm give
the best guess (minimisation algorithm dependent) esti-
mate for the parameters, often with a statistical uncer-
tainty. How this statistical uncertainty is obtained from
a minimisation algorithm is beyond it scope of this work,
but it is important to acknowledgment that this uncer-
tainty typically assumes that the posterior probability
for the parameter is Gaussian in nature. The posterior
probability is our understanding of the distribution of pa-
rameter values that can be used to describe the data and
our prior knowledge. The posterior probability is found
as,

p(D|x) ∝ p(x|D)p(x), (1)

where p(x|D) is our likelihood, a description of goodness-
of-fit between our parameterised model and the data and
p(x) is the prior probability associated with our parame-
ters. Similar to the importance of a given goodness-of-fit
metric in traditional model-dependent analysis processes,
the definition of the priors are extremely important in
the use of Bayesian modelling. Additionally, the descrip-
tion of the posterior distribution that results from the
Bayesian sampling processes is of paramount importance
in any scientific conclusions drawn.

Although the use of Bayesian inference can be valuable
in the interpretation of reflectometry data, inconsistency
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FIG. 1. The normalised prior probability for some parame-
ter, say a scattering length density, that is bounded between
4 and 10, a uniform distribution that can also be written as
x ∼ U [4, 10] or 4 ≤ x ≤ 10.

in the description of the process may result in analysis
that cannot be reproduced or easily understood. This
can range from information critical to the analysis repli-
cation being omitted, to failure to accurately describe
the structure of a parameter’s posterior probability. A
common example of this (that the authors of this work
admit to being guilty of [15]) is failure to recognise that
the utilisation of a bounded fitting, where a parameter is
limited to be within a given range of values, is a Bayesian
analysis and subsequently the bounds are then not stated
in the resulting publication, while this has no impact on
the quality of the results, some clarity and reproducibility
will be lost. The definition of a set of bounds on a param-
eter is fundamentally stating that the prior probability
for the parameter is uniform and non-zero between these
bounds and zero outside of them (Figure 1), a Bayesian
statement. This is incorporated into most fitting pack-
ages by allowing maximum and minimum fitting bounds
for fitting parameters.

In this letter, we outline some advice and define some
best practices for those analysing neutron and X-ray re-
flectometry measurements looking to report parameter
prior and posterior probability distributions. This letter
is by no means an exhaustive guide to Bayesian analy-
sis of reflectometry data but we hope that this will help
to engage others in best practice. Furthermore, uptake
of the approaches discussed herein will lead to greater
clarity about the models and assumptions used in, and
reproducibility of, our analyses.

II. PRIOR DEFINITION

The most common prior probability that is used for
a parameter is uniform between two values. The fact
that often it is overlooked by researchers that a bounded
parameter is in essence represents a uniform prior proba-
bility has been discussed above. For priors that are uni-
form, the most important information to provide to the
user are (1) that the parameter is truly uniform (i.e. all

values are equally likely in the prior) and (2) the values
of the upper and lower bounds.

There are a variety of different ways that a uniform
prior probability may be written; including upper and
lower bounds definition, or the range is given as a math-
ematical interval or expression. While the upper and
lower bound description is potentially the most legible,
it is also the least precise. The interval and expression ap-
proach are both capable of representing open and closed
intervals, i.e. for ρ in Table I the upper bound is included
in the probability, whereas for d the upper bound is not
included. For this reason, we suggest either the interval
or expression description to define a uniform probability,
or bounded fitting, for a given parameter.

The use of non-uniform informative priors is less com-
mon in the analysis of reflectometry data currently. How-
ever, with the growth of Bayesian inference and inter-
est in using complementary methods for analysis, these
are likely to become very popular in the coming years.
Here we will define two potential types of informative
prior probabilities, those that can be described with some
mathematical function and those that cannot, for exam-
ple arising from the application of a sampling-based anal-
ysis of a complementary technique.

Where it is possible to describe the prior probability
as a mathematical function, this should be done by pro-
viding the function in the clearest possible language. For
example, if the prior probability is taken from a single
complementary measurement that is defined as a value
with some uncertainty, this represents a normal distri-
bution with a mean and standard deviation. This is
shown in Figure 2a for the volume of phospholipid head
group that is has been found, from the analysis of a
molecular dynamics simulation [16], to have a value of
(320.9 ± 20.1)Å3. Such a prior probability should be
described as being normally distributed with a mean of
320.9 Å3 and a standard deviation of 20.1 Å3 or more con-
cisely p(Vh) ∼ N (µ = 320.9 Å3

, σ = 20.1 Å3
). This same

approach and be taken for any common statistical dis-
tribution, including log-normal and truncated Gaussian
distributions.

In the case that the prior distribution cannot be de-
scribed easily with some mathematical function, for ex-
ample, if it is a multimodal result from some other sam-
pling method, then the probability distribution should be
given in full. It is not straightforward to describe this dis-
tribution with some common statistical object, therefore
the full probability distribution will be plotted, as shown
in Figure 2b for a phospholipid tail volume. Futhermore,
this should also be given as either a chain (discussed for a
posterior distribution in more detail below) and as a set
of histogrammed bin centres and counts in a data file (see
prior.txt in the ESI for this work). This means that
it is possible for the reader to easily visualise the prior
distribution and to reproduce the analysis if desired.
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TABLE I. Examples of defining different bounds for a uniform prior probability.
Parameter Lower Upper Interval Expression

ρ/1 × 10−6 Å−2 4.0 10.0 p(ρ) ∼ U [4.0, 10.0] 4.0 ≤ ρ ≤ 10.0
d/Å 100.0 500.0 p(d) ∼ U [100.0, 500.0) 100.0 ≤ d < 500.0
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FIG. 2. Potential prior probability distributions; (a)
a normal distribtution based on a literature value of
(320.9 ± 20.1)Å3, (b) a potential result, for a phospholipid
tail volume, from some sampling approach to a complemen-
tary technique where there is not clear distribution that can
be defined.

III. POSTERIOR DESCRIPTION

The Bayesian analysis methods typically involve us-
ing some sampling process, such as Markov chain Monte
Carlo, to estimate the posterior probability distributions
for each of the parameters. For most analyses, there will
be N parameters under investigation, meaning that the
sampling is that of an N -dimensional probability distri-
bution. Therefore, it is important to provide information
both about the individual parameter posteriors and the
covariance between the parameters. An example of a
3-dimensional posterior probability distribution is given
for a nickel layer on silicon in Figure 3, showing the dis-
tribution of the magnetic and nuclear scattering length
densities for nickel and the thickness of the nickel layer.

While, ideally, the full posterior distribution plot and
chain would be provided for a given analysis [18], we ac-
cept that this may be unfeasible. Therefore, we suggest
that all of the posterior distributions that appear to be
Gaussian in nature as subjected to a statistical test to

8.3
83

8.3
86

8.3
89

8.3
92

8.3
95

ρ/
kg

m
−3

1.3
59
1.3
62
1.3
65
1.3
68
1.3
71

ρmag/10−6Å−2

98
2.2
598

2.5
098

2.7
598

3.0
098

3.2
5

d/
Å

8.3
83
8.3
86
8.3
89
8.3
92
8.3
95

ρ/kgm−3 98
2.2
5
98
2.5
0
98
2.7
5
98
3.0
0

d/Å

FIG. 3. An example of a corner plot (produced using the cor-
ner.py package [17]), representing a three-dimensional prob-
ability distribution showing the posterior distribution for the
parameters of nickel magnetic scattering length density, nickel
mass density, and nickel layer thickness, from the analysis of
a nickel layer on a silicon block.

check normality, such as the D’Agostino and Pearson’s
test [19, 20] (which is available in the SciPy library as
scipy.stats.normal_test [21]). As will all statistical
tests, this requires some threshold value to be defined
to reject the null hypothesis, for this value we recom-
mend 0.001 but accept that this is at the discretion of
the user. If the parameter distribution passes a statisti-
cal test for a given distribution type, this can be quoted
in the work, with information about the distribution type
and the threshold value used, and the distribution can be
described based on fitted parameters of the distribution
as is discussed above for the Gaussian distribution. For
example, the three parameters in Figure 3 pass this sta-
tistical tests, with p-values of less than 1 × 10−15, there-
fore we can quote the parameters as normal distributions;
ρmag ∼ N (µ = 1.4 × 10−6 Å−2

, σ = 1.5 × 10−9 Å−2
),

ρ ∼ N (µ = 8.4 × 10−6 kgm−3, σ = 1.4 × 10−9 kgm−3),
and d ∼ N (µ = 9.8 × 102 Å, σ = 1.2 × 10−1 Å).

In the case of an N -dimensional sampled distribution,
where all of the individual dimensions pass a normal
test, it is possible to describe the covariance between
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the distributions. This can be achieved with a covari-
ance/correlation matrix or correlation coefficients, both
of which are accessible from common programming lan-
guages. These parameters describe the amount of cor-
relation between different parameters, i.e. if parameter
A increases, does this make an increase in parameter B
more likely? Understanding these correlations are of fun-
damental importance to the sampling process, in partic-
ular for the ill-posed reflectometry technique. Figure 3
allows us to observe the correlation between the different
parameters easily, with showning the join variability of
the parameters as a heat map, where the more circular
the heat map the less correlation present. We can also
find the correlation matrix to be the following,

corr[p(D|x)] =

1.000 0.047 0.040
0.047 1.000 0.620
0.040 0.620 1.000

 , (2)

where the off-diagonal elements describe the correlation.
It can be seen that the larger correlation between the
mass density and thickness of the nickel layer is quantified
with the correlation matrix.

If it is not possible to describe the N -dimensional dis-
tribution using a series of statistical tests, then the prob-
ability distributions must be given in full, ideally as both
a plot and a chain of values. The plot should be provided
as a corner-type plot (Figure 3), and therefore make clear
the correlations present between the different parame-
ters. These corner-type plots, or similar, are available
from many common reflectometry analysis packages. In
addition to plots, the full chain (the values that are sam-
pled in the sampling of the posterior distribution) should
be given. These chains can be very large, therefore it is
suggested that they are included in the electronic supple-

mentary information of the work as a compressed file.

IV. CONCLUSIONS

The use of Bayesian analysis in neutron and X-ray re-
flectometry is increasing, and alongside this, these analy-
ses must be clear to readers and replicable by others. We
have outlined some advice, based on experience, on the
best practice from reporting information about Bayesian
analysis that is performed for reflectometry. Specifically,
we have outlined how the prior probabilities used to in-
form our analyses should be stated, either as uniform or
more informed probability distributions that may be de-
scribed mathematically or as a series of histogrammed
values or the complete chain of values. Additionally,
we described how best to present the results from our
Bayesian analysis in a clear and precise fashion, includ-
ing the importance of statistical tests for describing our
results and the inclusion of correlation between the dif-
ferent parameters. We hope that this advice will be taken
on by the reflectometry community and in future, there
will be greater consistency and clarity in the reporting of
results from Bayesian methods.
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